FURTHER STRUCTURAL STUDIES OF AN ANTI-COMPLEMENTARY ACIDIC HETEROGLYCAN FROM THE LEAVES OF Artemisia princeps

HARUKI YAMADA, HIROAKI KIYOHARA, AND YASUO OTSUKA

Oriental Medicine Research Center of the Kitasato Institute, Minato-ku, Tokyo 108 (Japan)
(Received January 3rd, 1987; accepted for publication, June 22nd, 1987)

ABSTRACT

Partial acid hydrolysis of the anti-complementary acidic heteroglycan, AAFIIb-3, isolated from the leaves of Artemisia princeps PAMP gave the oligosaccharides Gal-(1 \rightarrow 6)-Gal, Gal-(1 \rightarrow 6)-Gal, GalA-(1 \rightarrow 4)-Rha, GalA-(1 \rightarrow 2)-Rha, GlcA-(1 \rightarrow 4)-Gal, GlcA-(1 \rightarrow 4)-Rha, GlcA-(1 \rightarrow 6)-Gal, and GlcA-(1 \rightarrow 4)-Xyl. On methylation of AAFIIb-3 without de-esterification, 4-linked and 3,6-disubstituted galactan, 3-linked galactan, 4-linked galactan, and branched arabinan-rich fragments were obtained. The results of base-catalysed β -elimination indicated that AAFIIb-3 has a backbone consisting of 4-linked GalA and 2-linked Rha to which a highly branched arabino-3,6-galactan and arabino-4-galactan are linked at positions 4 of some 2-linked Rha units. Xyl-(1 \rightarrow 4)-GalA, GlcA-(1 \rightarrow 4)-Xyl-GalA, and \rightarrow 3)-Gal-(1 \rightarrow 4)-GalA might also be joined to other 2-linked Rha at the same position. Some 6-linked and 4-linked Gal were terminated by GlcA.

INTRODUCTION

Artemisiae Argyi Folium, the leaves of A. princeps PAMP (Japanese name Gaiyo), is a well known Chinese drug used clinically, from which we have purified anti-complementary polysaccharides¹, AAFIIb-2 and IIb-3. AAFIIb-2 and IIb-3 (refs. 1,2) consisted of Rha, Xyl, Ara, Gal, Glc, GalA, and GlcA in the molar ratios 7.6:7.6:13.0:10.9:3.0:51.2:6.7 and 3.9:2.6:24.7:19.7:2.6:15.0:31.5, respectively. The results of carboxyl reduction, methylation analysis, and enzymic hydrolysis suggested² that each glycan contained a main chain consisting of $(1\rightarrow 4)$ -linked GalA and $(1\rightarrow 2)$ -linked Rha mostly substituted at position 4. Each glycan² also contained an arabino-3,6-galactan moiety, and most of the arabinose was present as α -L-furanosyl residues at the non-reducing termini and highly branched side-chains which were attached mostly to positions 3 of $(1\rightarrow 6)$ -linked Galp. Some non-reducing termini² were occupied by GlcA.

We now report further on the structure of the major polysaccharide, AAFIIb-3.

EXPERIMENTAL

Materials and methods. — The leaves of A. princeps PAMP were purchased from Uchida Wakanyaku Co. Ltd. (Tokyo). Bio-gel P-2 (200-400 mesh) was obtained from Bio-Rad, QAE-Sephadex A-25, Sephadex G-15, and LH-20 from Pharmacia, and Sep-Pak C_{18} cartridges from Waters Associates Inc. Exo- α -L-arabino-furanosidase³ from Rhodotorula flava was a gift from Dr. Naoto Shibuya (National Food Research Institute, Ministry of Agriculture, Forestry and Fisheries, Japan).

The carbohydrate and uronic acid in column fractions were monitored by the phenol-sulphuric acid⁴ and the *m*-hydroxybiphenyl⁵ methods, respectively. Component sugars of oligosaccharides were analysed⁶ as the corresponding alditol acetates by g.l.c. T.l.c. of acid hydrolysates was performed on cellulose-coated plastic sheets (Merck), using ethyl acetate-pyridine-acetic acid-water (5:5:1:3). P.c. was performed on No. 51 paper (Toyo-Roshi Co. Ltd., Japan), using ethyl acetate-formic acid-acetic acid-water (18:1:3:4). Reducing sugars were detected with alkaline silver nitrate⁷ and uronic acid with *p*-anisidine hydrochloride⁸.

The anti-complementary polysaccharide, AAFIIb-3, isolated from the leaves of A. princeps PAMP and purified¹, was shown to be homogeneous by electrophoresis, ion-exchange chromatography, and gel filtration, and was digested² by $exo-\alpha-1$ -arabinofuranosidase.

Determination of carboxyl methyl groups⁹. — A solution of AAFIIb-3 (2 mg) in 0.5M sodium hydroxide (0.1 mL) containing ethanol as internal standard was stored for 1 h at 20° and then subjected directly to g.l.c. using a glass column (0.3 × 200 cm) of Gaskuropack 54 (Gasukuro Kogyo, Japan) at 120° .

Methylation analyses. — (a) AAFIIb-3 (3 mg) was de-esterified ¹⁰ at pH 12 for 2 h at 4° and then methylated once by the Hakomori procedure ¹¹ in order to prevent β -elimination, but methylsulphinylcarbanion was added two or three times until the conversion of the polysaccharide into a polyalkoxide was complete as checked by using triphenylmethane ¹². The methylated polysaccharide was purified on a Sep-pak C_{18} cartridge ¹³ followed by gel filtration ¹⁴ on Sephadex LH-20.

- (b) AAFIIb-3 was methylated, without de-esterification, by the above method¹¹, but methylsulphinylcarbanion was added only once. The reaction mixture was dialysed against water. The fully methylated oligosaccharide fractions, DF-1 and DF-2, in the diffusible fractions were eluted from a Sep-pak C₁₈ cartridge with acetonitrile-water (1:4) and acetonitrile-ethanol (1:1), respectively. Extraction of the non-diffusible fraction with chloroform gave Ext-1. The water-soluble fraction was remethylated and extracted with chloroform to give Ext-2 and the process was repeated to give Ext-3.
- (c) Each neutral and acidic oligosaccharide was reduced with sodium borodeuteride and then methylated. The methylated acidic oligosaccharide-alditols were carboxyl-reduced^{2,13} with sodium borodeuteride in tetrahydrofuran-ethanol (7:3) and then methylated.

Partial acid hydrolysis of AAFIIb-3. — α -L-Arabinofuranosidase-treated

AAFIIb-3 (Af-AAFIIb-3, 45 mg) was hydrolysed with 0.25M sulphuric acid (4.5 mL) for 1.5 h at 100°. The hydrolysate was neutralised (BaCO₃) and then applied to a column (2 \times 15 cm) of QAE-Sephadex A-25 (HCO₃⁻ form). The neutral fraction was eluted with water, and the acidic fraction with 0.1, 0.3, and 0.5M NH₄HCO₃. The neutral fraction was further fractionated by elution from a column (2.5 \times 50 cm) of Bio-gel P-2 at 55° with water to give N-1 and N-2, eluted in the tri- and di-saccharide regions, and a monosaccharide fraction. The acidic fraction (0.1M NH₄HCO₃ eluate) was fractionated on a column (0.8 \times 42 cm) of Sephadex G-15 equilibrated with water, to give Fr-1 and Fr-2 (major). Fr-2 was further purified by p.c. to give A-1 (R_{GicA} 0.98-0.85) and A-2 (R_{GicA} 0.83-0.61).

G.l.c-m.s. — A solution of each methylated oligosaccharide-alditol in acetone was injected into a SPB-5 capillary column (0.25- μ m film thickness, 25 m × 0.25 mm i.d., SUPELCO) in the splitless mode. The temperature program was 120° for 3 min, \rightarrow 190° at 30°/min, and \rightarrow 310° at 4°/min. Both e.i. (70 eV; ionisation current, 300 μ A) and c.i. (isobutane, 250 eV; accelerating voltage, 3 kv) mass spectra were recorded with a JEOL DX-300 mass spectrometer. C.i. 15 and e.i. fragment ions A, J, and alditol (ald) 16 were used to determine the structures.

 β -Elimination^{17,18}. — A solution of dry, methylated, de-esterified AAFIIb-3 (2 mg) in methyl sulphoxide (1 mL) was stirred with 2M methylsulphinylcarbanion (250 μ L) for 24 h at room temperature. To 70% of the sample was added excess of ethyl iodide, the mixture was kept overnight at room temperature, and the partially ethylated sample was recovered ^{13,14} using a Sep-pak C₁₈ cartridge and fractionated ¹⁴ on a column (1.0 \times 25 cm) of Sephadex LH-20 to give material of high (R₂-a) and low (R₂-b) molecular weight. The remainder of the sample was neutralised with aqueous 50% AcOH, and the product (R₁) was obtained as described above. R₁, R₂-a, and R₂-b were each hydrolysed and the products were converted ¹⁴ into the alditol acetates. The linkage composition of the sample was then determined by g.l.c. and g.l.c.-m.s., using a JEOL DX-300 instrument equipped with an SPB-5 capillary column ¹⁴.

RESULTS AND DISCUSSION

AAFIIb-3 (neutral component sugars: Rha:Ara:Xyl:Gal molar ratios, 1.0:3.1:0.6:3.1* was treated with exo-α-L-arabinofuranosidase, and the undigested polysaccharide (Af-AAFIIb-3), recovered by gel filtration on Bio-gel P-2, was composed mainly of Rha, Ara, Xyl, and Gal in the molar ratios 1.0:0.8:0.5:2.9 together with large proportions of GalA and GlcA. Hydrolysis of Af-AAFIIb-3 with 0.25M sulphuric acid for 1.5 h at 100° gave neutral mono-, tri- (N-1), and disaccharide (N-2) fractions, and the acidic mono- and oligo-saccharide (A-1 and A-2)

^{*} Different from the preparation reported¹ previously. AAFIIb-2 and AAFIIb-3 were structurally related polysaccharides, which were eluted¹ as adjacent peaks on gel filtration and were slightly cross-contaminated.

TABLE I

DIAGNOSTIC IONS OBTAINED ON C.I.-M.S. OF METHYLATED OLIGOSACCHARIDE-ALDITOLS

Oligosaccharide fraction	Fragment	Retention time ^a	Oligosaccharide	Chemical-ionisation (relative abundance)	isation mas idance)]	Chemical-ionisation mass-spectral fragment ions [m/z] relative abundance)]	gment ions	[z/m].
		(min)		(M+H)+	A ⁺	AOH_2^+	ţ5	(G-MeOH)
N-2	æ		hexosyl-hexitol	472	236	254	219	187
			•	(2.0)	(55.6)	(9.4)	(27.8)	(100)
	ء.		hexosyl-hexitol	472	236	254	219	187
				(2.8)	(60.8)	(11.3)	(30.5)	(100)
A-1	ပ	11.8	hexuronosyl-deoxyhexitol	44	506	224	221	189
			•	(0.5)	(25.3)	(32.1)	(6.1)	(100)
	þ	13.2	hexuronosyl-hexitol	474	236	254	221	189
				(0.6)	(56.9)	(75.5)	(13.8)	(100)
A-2	e)	10.6	hexuronosylpentitol	430		210	221	189
				(0.9)		(73.6)	(29.5)	(100)
	4	11.2	hexuronosyl-deoxyhexitol	4	902	224	221	189
			•	(0.3)	(7.27)	(34.8)	(10.8)	(100)
	500	11.8	hexuronosyl-deoxyhexitol	4	50 6	224	221	189
	ı			(1.0)	(74.3)	(7.3)	(38.3)	(100)
	h	13.2	hexuronosyl-hexitol	474	236	254	221	189
				(0.0)	(24.5)	(73.8)	(13.8)	(100)
	•	16.2	hexuronosyl-hexitol	474	236	254	221	189
				(3.4)	(60.3)	(45.6)	(10.5)	(100)

^a DB-5 (SUPELCO, 0.25 mm × 25 m; He, 0.9 mL/min; 180→310° at 4°/min). Glc is eluted faster than Gal on DB-5

TABLE II

DIAGNOSTIC 10NS OBTAINED ON E.I.-M.S. OF METHYLATED DISACCHARDE-ALDITOLS

Oligosaccharide Fragm	Fragment	Oligosaccharide	E.i. mass	E.i. mass-spectral fragment ions [m/z] (relative abundance)]	fragmen	ions [m/	z] (relati	ve abuno	[ance]			
Jraction			aJ_1	aJ_2	bA,	bA2	ald					
N-2	æ	Hex-(1→6)-Hex-ol	296	236	219	187	337	305	293	178	146	
	ρď	Gal-(1→6)-Gal-ol	(0.3) (0.3)	(100)	219 (15.8)	187 187 (51.9)	337 (29.2)	305 (0.6)	293 (0.2)	178 178 (11.9)	146 (37.1)	
A-1	່ນ	GalA-(1→2 and 4)-Rha-ol		506	221	189	340	308	103	309	277	134
	ğ	GlcA-(1→4)-Gal-ol	296 (4.0)	236 (22.6)	221 (10.5)	(42.0) 189 (68.3)	(6.9)	(O:1)	(d.c t)	(C)	9:5)	(3.99)
A-2	e _a	GlcA-(1-→4)-Xyl-ol	252	192	122	189	295					
	f	GlcA-(1→4)-Rha-ol	9 6 (±)	386	£ 22.	189	353	321	277	134		
	⁸ 50	GalA-(1→2 and 4)-Rha-ol	(c.c)	206. 206. 206.	221	189	3 % 6 %	308	103	308	277	134
	\mathbf{p}_{p}	GlcA-(1→4)-Gal-ol	5 5 5 6 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5	236	221	189		9	(i.o.)	(): ()		
	$q_{ m I}$	GlcA-(1→6)-Gal-ol	(i.t.)	236		189	339	307	295	178	146	
				(1.1)	(0.6)	(00.7)	(4:1)	(5.5)	(5.0)	(1./1)	(2:52)	

^a Major oligosaccharides. ^b Oligosaccharides in moderate amounts. ^c Assigned on the basis of g.l.c.-e.i.-m.s. and methylation analysis data.

fractions together with highly polymeric material. The neutral monosaccharide fraction contained Rha, Ara, Xyl, and Gal in the molar ratios 1.0:4.5:4.4:7.2, and the acidic monosaccharide fraction contained only GlcA.

Characterisation of the neutral oligosaccharides. — N-1 and N-2, each of which consisted of Gal and a trace of Glc, were reduced with sodium borodeuteride and then methylated. G.l.c.-c.i.-m.s. of the products from N-2 revealed two hexose disaccharide-alditol derivatives [a and b (major) in Table I]. E.i.-m.s. of a and b gave, inter alia, fragment ions bA₁ at m/z 219 and aJ₁ m/z 296 (Table II). These results agreed well with those of c.i.-m.s. The formation of fragment ions of the ald series at m/z 337, 293, and 178 from a and b suggested that each was a Hex-(1--6)-Hex-ol. Therefore, the major product b was identified as Gal-(1--6)-Gal-ol, whereas a was thought to contain Glc or Glc and Gal. E.i.-m.s. (Table III) of the methylated oligosaccharide-alditol from N-1 gave specific fragment ions at m/z 219 (cA₁), 440 (abJ₂), and 236 (aJ₂), indicating it to be derived from a trisaccharide composed of hexose. Methylation analysis (Table IV) of N-1 indicated it to be

TABLE III

DIAGNOSTIC IONS OBTAINED ON E.I.-M.S. OF THE METHYLATED TRISACCHARIDE-ALDITOL DERIVED FROM N-1

Oligosaccharide	_	ent ions relative (ance)]					
	cA_I	cA ₂	aJ_1	aJo	aJ_2	abJ_1	abJ_2	ald	
$Gal-(1 \longrightarrow X)-Gal-(1 \longrightarrow 6)-Gal-ol^{\alpha}$	219 (21.0)	187 (58.5)			236 (90.1)		440 (16.5)	541 (0.3)	146 (13.1)

 $^{^{}a}X = 3, 4 \text{ or } 6.$

TABLE IV

METHYLATION ANALYSIS DATA FOR OLIGOSACCHARIDE FRACTIONS

Methylated sugarsa	Mol. r	atio		Linkages	
	N-1	A-1	A-2		
1,3,4,5-Me₄-Rha- <i>1-d</i>		0.1	trace	>2)-Rha	
1,2,3,5-Me ₄ -Rha-1-d		0.06	trace	→4)-Rha	
1,2,3,5-Me ₄ -Xyl-1-d			trace	→4)-Xyl	
1,2,3,5,6-Me ₅ -Gal-1-d		0.1	0.1	→4)-Gal	
1,2,3,4,5-Me ₅ -Gal-1-d	0.1		0.04	→6)-Gal	
2,3,4,6-Me ₄ -Gal	1.0		0.01	Gal-(1→	
2.3.4-Me ₂ -Gal	1.7			→6)-Gal-(1→	
2,3,4,6-Me ₄ -Glc-6,6-d ₂		1.0	1.0	GlcA-(1→	
2,3,4,6-Me ₄ -Gal-6,6-d ₂		3.7	0.3	GalA-(1→	

^a Derived from fully methylated oligosaccharide-alditols.

 $Gal-(1\rightarrow 6)-Gal-(1\rightarrow 6)-Gal$.

Characterisation of the acidic oligosaccharides. — The acidic oligosaccharides in A-1 consisted of Rha and Gal in the molar ratio 2.8:1.0 together with GalA and GlcA, whereas those in A-2 consisted of Rha, Xyl, and Gal in the molar ratios 1.0:2.0:2.1 together with GalA and GlcA. The oligosaccharide-alditols derived from A-1 and A-2 were methylated, then carboxyl-reduced with sodium borodeuteride, methylated, and analysed by g.l.c.-m.s. (Tables I and II). C.i.- and e.i.-m.s. showed A-1 to contain two disaccharide fragments [c (major) and d]. Methylation analysis (Table IV) showed that A-1 contained 2- and 4-linked Rhap, and 4-linked Galp reducing end-groups in addition to non-reducing terminal GalA and GlcA. Therefore, c was identified as a mixture of GalA- $(1\rightarrow 4)$ -Rha-ol and GalA- $(1\rightarrow 2)$ -Rha-ol, whereas d was thought to be HexA- $(1\rightarrow 4)$ -Gal-ol. G.l.c.-m.s. showed that A-2 contained five disaccharide fragments: e and g (major), h and i (intermediate), and f(minor); g and h had the same retention times and same fragmentation patterns as cand d, respectively. Component f was identified as GlcA- $(1\rightarrow 4)$ -Rha-ol because it was eluted faster than g in g.l.c. A-2 contained a larger amount of non-reducing terminal GlcA than GalA; therefore, d, e, and i were suggested to be GlcA- $(1\rightarrow 4)$ -Gal-ol, GlcA- $(1\rightarrow 4)$ -Xyl-ol, and GlcA- $(1\rightarrow 6)$ -Gal-ol, respectively. The other oligosaccharides could not be identified because of the small quantities available.

Methylation analysis of AAFIIb-3 without de-esterification. — AAFIIb-3 contained 14.8% of methoxycarboxyl groups per total uronic acid, and methylation without de-esterification gave diffusible methylated fragments, DF-1 (short-chain oligosaccharides) and DF-2 (larger oligosaccharides) (Table V). DF-1 consisted mainly of 3-linked and 3,4,6-trisubstituted Galp, whereas DF-2 consisted mainly of 4-linked Galp and 2,4-disubstituted Rha together with 6- and 3-linked Galp, terminal Araf, and 4- or 5-linked Ara. DF-2 also contained terminal and 4-linked Xyl. The non-diffusible fragment (Ext-1) from the first methylation product consisted mainly of 4- and 3-linked Galp and 3,6-disubstituted Galp, whereas the non-diffusible fragment (Ext-2) from the second one consisted mainly of terminal Araf, 4or 5-linked and 3,4- or 3,5-disubstituted Ara, and 4-linked and 3,6-disubstituted Galp. The non-diffusible fragment (Ext-3) from the third one consisted mainly of the same Ara residues as Ext-2, and 3-linked and 3,6-disubstituted Galp. The yield of Ext-1 was about ten times higher than those of Ext-2 and Ext-3. Of the nondiffusible fragments, 2,4-disubstituted Rha was present only in Ext-1, but in small amount. However, DF-2 contained a significant amount of 2,4-disubstituted Rha. In Ext-1 and DF-1, significant amounts of terminal glycosyl residues could not be detected, possibly because of incomplete methylation or the presence of some GlcA as terminal residues. These results suggested (a) that base-catalysed β -elimination had occurred during the methylation of AAFIIb-3 using Hakomori base¹¹, without loss of the carboxyl methyl groups; and (b) that 3-linked galacto-oligosaccharide, various arabino-3,6-galactan-containing 4-galactans, and a highly branched Ara chain might be linked to the different 2,4-disubstituted Rha.

TABLE VMETHYLATION ANALYSIS DATA FOR THE NEUTRAL SUGAR MOIETY FROM AAFIIb-3

Glycosyl	Position of	Deduced	Fragmen	its (mol	%)		
residues	O-methyl groups	glycosidic linkages	Non-dif	fusible		Diffusii	ble
			Ext-1	Ext-2	Ext-3	DF-1	DF-2
Arabinosyl	2,3,5	Terminal	1.9	30.5	30.0	3.3	7.9
	2,3	4 or 5	3.4	22.5	17.2		6.8
	Ž	3,4 or 3,5	1.2	17.7	14.4		4.4
Rhamnosyl	3.4	2	2.7				
	3,4 3	2,4	3.8			trace	10.6
Xvlosyl	2,3,4	Terminal	trace				5.7
	2,3	4	3.6				7.6
Galactosyl	2,3,4,6	Terminal	3.4	1.8	1.8	7.8	6.5
•	2,3,6	4	40.5	9.5	5.4		30.3
	2,4,6	3	9.7	4.5	10.8	61.0	7.3
	2,3,4	6	4.3	4.3	6.3		8.4
	2,4	3,6	25.5	9.2	13.3		4.4
	2	3,4,6			0.9	25.0	

TABLE VI LINKAGE COMPOSITION OF AAFIIb-3 before and after base-catalysed β -elimination of uronic acid residues

	5 0 (1) (6)	~ 4		Before	After elin	nination	
Glycosyl residues	Position of O-methyl groups	Position of O-ethyl groups	Deduced glycosidic linkages	elimination AAFIIb-3 (mol %)	R _I -HexA (mol %)		HexA-R ₂ b (molar ratio)
Arabinosyl	2,3,5 2,3 2		Terminal 4 or 5 3,4 or 3,5	13.7 12.3 10.5	21.3 21.4 15.4	17.5 19.0 15.5	1.0 1.0
Rhamnosyl	3,4 3 3	2	2 2,4 2,4	6.6 7.6	3.0 5.3	1.3 2.9 1.5	2.0 1.0 1.0
Xylosyl	2,3,4 2,3		Terminal 4	4.4 6.6	1.7 3.5	1.8 6.1	1.0
Galactosyl	2,3,4,6 2,3,6 2,4,6 2,3,4		Terminal 4 3 6	6.6 11.2 6.9 7.1	4.5 9.0 2.4 7.0	3.6 9.5 3.4 8.3	2.0 1.0
	2,3,4 2,4	6	6 3,6	6.6	5.6	2.1 7.5	trace

Identification of rhamnogalacturonan core by base-catalysed β -elimination. — De-esterified AAFIIb-3 was methylated once in order to prevent β -elimination during the methylation procedure. The base-catalysed β -elimination of methylated AAFIIb-3 was then performed, and the hydroxyl groups exposed were ethylated to give products of high (R₂-a) and low molecular weight (R₂-b) isolated by gel filtration on Sephadex LH-20. Methylation analysis (Table VI, R₁-HexA) showed a decrease of terminal and 4-linked Xylp, 2-linked and 2,4-disubstituted Rhap, terminal and 3-linked Galp in AAFIIb-3 after the treatment. These results indicated that 50-65% of terminal and 4-linked Xylp, 2-linked Rhap, and 3-linked Galp, and 30% of terminal Galp and 2,4-disubstituted Rhap were mainly attached to C-4 of GalpA in AAFIIb-3 (1-6). Methylation analysis of R₂-a gave 1,4,5-tri-O-acetyl-2-O-ethyl-3-O-methylrhamnitol and 1,5-di-O-acetyl-6-O-ethyl-2,3,4-tri-O-methylgalactitol, and R₂-b gave 1,4,5-tri-O-acetyl-2-O-ethyl-3-O-methylrhamnitol, and also terminal Araf, Xylp, and Galp, 4- or 5-linked Ara, 2-linked and 2,4-disubstituted Rhap, and 4- and 6-linked Galp.

These results suggested that 4-substituted GalA was linked to position 2 of the 2,4-disubstituted Rha (7), and that uronic acid residues were also attached to position 6 of Galp (8). The results of the analysis of R₂-b suggested that AAFIIb-3 possessed the partial structures shown in 9 and 10.

DISCUSSION

The previous study² suggested AAFIIb-3 to be a pectic polysaccharide with a rhamnogalacturonan core and an arabinogalactan moiety attached at position 4 of Rha, as found in the rhamnogalacturonan moiety in such pectic substances¹⁹ as rhamnogalacturonan 1 (ref. 20) (RG-1) solubilised from the cell walls of suspensioncultured sycamore cells (Acer pseudoplatanus). Methylation analysis of AAFIIb-3, before and after treatment with α -L-arabinofuranosidase, revealed the presence of (1→2)- and (1→2,4)-linked Rha, (1→4)-linked GalA, non-reducing terminal Araf, $(1\rightarrow 5)$ -linked Araf or $(1\rightarrow 4)$ -linked Ara, $(1\rightarrow 3,5)$ -linked Araf, non-reducing terminal Gal, $(1\rightarrow 3)$ -, $(1\rightarrow 4)$ -, $(1\rightarrow 6)$ -, and $(1\rightarrow 3,6)$ -linked Gal, non-reducing terminal Xyl, and GlcA. The present oligosaccharide analysis and base-catalysed β -elimination studies suggested that AAFIIb-3 contained a rhamnogalacturonan core as shown in 11. Recently, it was shown²¹ that the core structure of RG-1 contained relatively long portions of the sequence $\rightarrow 4$)- α -D-GalpA- $(1\rightarrow 2)$ -L-Rha- $(1\rightarrow ...$ AAFIIb-3 might contain di- or tri-rhamnosyl units in the rhamnogalacturonan core, because 3,4-di-O-methyl-, 3-O-methyl-, and 2-O-ethyl-3-O-methyl-rhamnitol were detected in the small fragment produced by β -elimination. A Rha-rich region²² has been observed in the oligosaccharides formed by acetolysis of the acidic polysaccharide from soy-bean cotyledon meal. The present results suggested that the arabino-3,6-galactan, 4-galactan, and branched arabinan might be linked to position 4 of 2,4-disubstituted Rha, and that GalA, Xyl-(1---4)-GalA, GlcA-(1---4)-Xyl- $(1\rightarrow 4)$ -GalA, Gal- $(1\rightarrow 4)$ -GalA, or $\rightarrow 3$)-Gal- $(1\rightarrow 4)$ -GalA might be attached variously to this position. Some 6- and 4-substituted Galp of arabino-3,6- or -4-galactan chains were terminated by GlcA because GlcA was present³ only in the non-reducing terminal, and GlcA-(1→6)-Gal and GlcA-(1→4)-Gal were obtained by partial acid hydrolysis. GlcA-(1--4)-Rha was also obtained by partial acid hydrolysis of AAFIIb-3, but the location of this unit is not known.

A structure similar to that of AAFIIb-3 has been found in the acidic unit¹⁴ of an anti-complementary pectic arabinogalactan (AGIIb-1) [refs. 14,23] isolated from the roots of Angelica acutiloba. AGIIb-1 also contains a dirhammnosyl unit¹⁴ in the rhamnogalacturonan core, and GalA was attached to some Rha at position 4 as the

$$Rha-(1-4)-GalA-(1-4)$$

side chain. The overall structure of AGIIb-1 was suggested to consist of one neutral and two acidic arabinogalactans and one neutral arabinan, which were inter-linked by acid-labile linkages. Although the structure of AAFIIb-3 was similar to that of AGIIb-1, the presence of the unit structure in AAFIIb-3 is not yet known.

The structure-activity relationships of AAFIIb-3 will be reported elsewhere.

ACKNOWLEDGMENTS

The authors thank Ms. A. Nakagawa and Ms. C. Sakabe for assistance with g.l.c.-m.s., and Dr. J.-C. Cyong for his encouragement. A part of this work was supported by the fund of Tsumura-Juntendo Co. Ltd., Tokyo.

REFERENCES

- H. Yamada, K. Ohtani, H. Kiyohara, J.-C. Cyong, Y. Otsuka, Y. Ueno, and S. Ōmura, *Planta Med.*, (1985) 121-125.
- 2 H. YAMADA, Y. OTSUKA, AND S. ŌMURA, Planta Med., (1986) 311-314.
- 3 E. UESAKA, M. SATO, M. RAIJU, AND A. KAJI, J. Bacteriol., 133 (1978) 1073-1077.
- 4 M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, *Anal. Chem.*, 28 (1956) 350-356.
- 5 N. Blumenkrantz and G. Asboe-Hansen, Anal. Biochem., 54 (1973) 484-489.
- 6 P. Albersheim, K. J. Nevins, P. D. English, and A. Karr, Carbohydr. Res., 5 (1967) 340-345.
- 7 W. E. TREVELYAN, D. P. PROCTER, AND J. S. HARRISON, Nature (London), 166 (1950) 444-445.
- 8 L. HOUGH, J. K. N. JONES, AND W. H. WADMAN, J. Chem. Soc., (1950) 1702-1706.
- 9 N. SHIMIZU AND M. TOMODA, Chem. Pharm. Bull., 31 (1983) 499-506.
- 10 P. D. English, A. Maglothin, K. Keegstra, and P. Albersheim, Plant Physiol., 49 (1972) 293-297.
- 11 S. HAKOMORI, J. Biochem. (Tokyo), 55 (1964) 205-208.
- 12 H. RAUVALA, Carabohydr. Res., 72 (1979) 257-260.
- 13 T. J. WAEGHE, A. G. DARVILL, M. McNeil, and P. Albersheim, Carbohydr. Res., 123 (1983) 281-304.
- 14 H. KIYOHARA, H. YAMADA, AND Y. OTSUKA, Carbohydr. Res., 167 (1987) 221-237.
- 15 O. S. CHIZHOV, V. I. KADENTSEV, A. A. SOLOVYOV, P. F. LEVONOWICH, AND R. C. DOUGHERTY, J. Org. Chem., 41 (1976) 3425-3428.
- 16 N. K. KOCHETKOV AND O. S. CHIZHOV, Adv. Carbohydr. Chem., 21 (1966) 39-93.
- 17 B. LINDBERG, J. LÖNNGREN, AND J. L. THOMPSON, Carbohydr. Res., 28 (1973) 351-357.
- 18 M. McNeil, A. G. Darvill, and P. Albersheim, Plant Physiol., 66 (1980) 1128-1134.
- 19 G. O. ASPINALL, in J. Preiss (Ed.), *The Biochemistry of Plants*, Vol. 3, Academic Press, New York, 1980, pp. 473-500.
- 20 M. McNeil, A. G. DARVILL, AND P. ALBERSHEIM, Plant Physiol., 66 (1980) 1128-1134.
- 21 J. M. LAU, M. McNeil, A. G. Darvill, and P. Albersheim, *Carbohydr. Res.*, 137 (1985) 111-125.
- 22 G. O. ASPINALL, I. W. COTTRELL, S. V. EGAN, I. M. MORRISON, AND J. N. C. WHYTE, J. Chem. Soc., (1967) 1071-1080.
- 23 H. Yamada, H. Kiyohara, J.-C. Cyong, and Y. Otsuka, Carbohydr. Res., 159 (1987) 275-291.